2,094 research outputs found

    Recent Developments in Parallelization of the Multidimensional Integration Package DICE

    Full text link
    DICE is a general purpose multidimensional numerical integration package. There can be two ways in the parallelization of DICE, "distributing random numbers into workers" and "distributing hypercubes into workers". Furthermore, there can be the combination of both ways. So far, we had developed the parallelization code using the former way and reported it in ACAT2002 in Moscow. Here, we will present the recent developments of parallelized DICE in the latter way as the 2nd stage of our parallelization activities.Comment: 5 pages, 2 figures, Talk given at the X International Workshop on Advanced Computing and Analysis Techniques in Physics Research, ACAT 2005, DESY-Zeuthen, Germany, 22-27 May 200

    Injection and detection of spin in a semiconductor by tunneling via interface states

    Full text link
    Injection and detection of spin accumulation in a semiconductor having localized states at the interface is evaluated. Spin transport from a ferromagnetic contact by sequential, two-step tunneling via interface states is treated not in itself, but in parallel with direct tunneling. The spin accumulation induced in the semiconductor channel is not suppressed, as previously argued, but genuinely enhanced by the additional spin current via interface states. Spin detection with a ferromagnetic contact yields a weighted average of the spin accumulation in the channel and in the localized states. In the regime where the spin accumulation in the localized states is much larger than that in the channel, the detected spin signal is insensitive to the spin accumulation in the localized states and the ferromagnet probes the spin accumulation in the semiconductor channel.Comment: 7 pages, 2 figures. Theory onl

    Thermal spin current and magnetothermopower by Seebeck spin tunneling

    Full text link
    The recently observed Seebeck spin tunneling, the thermoelectric analog of spin-polarized tunneling, is described. The fundamental origin is the spin dependence of the Seebeck coefficient of a tunnel junction with at least one ferromagnetic electrode. Seebeck spin tunneling creates a thermal flow of spin-angular momentum across a tunnel barrier without a charge tunnel current. In ferromagnet/insulator/semiconductor tunnel junctions this can be used to induce a spin accumulation (\Delta \mu) in the semiconductor in response to a temperature difference (\Delta T) between the electrodes. A phenomenological framework is presented to describe the thermal spin transport in terms of parameters that can be obtained from experiment or theory. Key ingredients are a spin-polarized thermoelectric tunnel conductance and a tunnel spin polarization with non-zero energy derivative, resulting in different Seebeck tunnel coefficients for majority and minority spin electrons. We evaluate the thermal spin current, the induced spin accumulation and \Delta\mu/\Delta T, discuss limiting regimes, and compare thermal and electrical flow of spin across a tunnel barrier. A salient feature is that the thermally-induced spin accumulation is maximal for smaller tunnel resistance, in contrast to the electrically-induced spin accumulation that suffers from the impedance mismatch between a ferromagnetic metal and a semiconductor. The thermally-induced spin accumulation produces an additional thermovoltage proportional to \Delta\mu, which can significantly enhance the conventional charge thermopower. Owing to the Hanle effect, the thermopower can also be manipulated with a magnetic field, producing a Hanle magnetothermopower.Comment: 10 pages, 3 figures, 1 tabl

    Anomalous Quartic WWγγWW\gamma\gamma and ZZγγZZ\gamma\gamma Couplings in eγe\gamma Collision With Initial Beams and Final State Polarizations

    Full text link
    The constraints on the anomalous quartic WWγγWW\gamma\gamma and ZZγγZZ\gamma\gamma gauge boson couplings are investigated through the processes eγWγνee\gamma\to W^{-}\gamma\nu_{e} and eγZγee\gamma\to Z\gamma e. Considering the longitudinal and transverse polarization states of the final W or Z boson and incoming beam polarizations we find 95% confidence level limits on the anomalous coupling parameters a0a_{0} and aca_{c} with an integrated luminosity of 500 fb1fb^{-1} and s\sqrt{s}=0.5, 1 TeV energies. Assuming the W+WγγW^{+}W^{-}\gamma\gamma couplings are independent of the ZZγγZZ\gamma\gamma couplings we show that the longitudinal polarization state of the final gauge boson improves the sensitivity to anomalous couplings by a factor of 2-3 depending on energy and coupling. An extra enhancement in sensitivity by a factor of 1.3 comes from a set of initial beam polarizations

    Distillation of Entanglement between Distant Systems by Repeated Measurements on Entanglement Mediator

    Get PDF
    A recently proposed purification method, in which the Zeno-like measurements of a subsystem can bring about a distillation of another subsystem in interaction with the former, is utilized to yield entangled states between distant systems. It is shown that the measurements of a two-level system locally interacting with other two spatially separated not coupled subsystems, can distill entangled states from the latter irrespectively of the initial states of the two subsystems.Comment: 11 pages, 2 figures; the version accepted for publication in Phys. Rev.

    RF amplification property of the MgO-based magnetic tunnel junction using field-induced ferromagnetic resonance

    Full text link
    The radio-frequency (RF) voltage amplification property of a tunnel magnetoresistance device driven by an RF external-magnetic-field-induced ferromagnetic resonance was studied. The proposed device consists of a magnetic tunnel junction (MTJ) and an electrically isolated coplanar waveguide. The input RF voltage applied to the waveguide can excite the resonant dynamics in the free layer magnetization, leading to the generation of an output RF voltage under a DC bias current. The dependences of the RF voltage gain on the static external magnetic field strength and angle were systematically investigated. The design principles for the enhancement of the gain factor are also discussed.Comment: 12 pages, 3 figure

    Lateral Effects in Fermion Antibunching

    Full text link
    Lateral effects are analyzed in the antibunching of a beam of free non-interacting fermions. The emission of particles from a source is dynamically described in a 3D full quantum field-theoretical framework. The size of the source and the detectors, as well as the temperature of the source are taken into account and the behavior of the visibility is scrutinized as a function of these parameters.Comment: 22 pages, 4 figure
    corecore